

Cyanobacteria as Biocatalysts for Solar-driven Biofuel Production

Wim Vermaas

Center for Bioenergy and Photosynthesis, and

School of Life Sciences

Arizona State University

wim@asu.edu

Cyanobacterial Platform for Solar Biofuel Production

Efficiency < 1%

Efficiency ~4%

- Switchable to stationary phase:
 - no net biomass generation
 - no net mineral use
- Secreted fatty acid, easy separation
- Few biochemical steps
- Can use atmospheric CO₂

Synechocystis as a Biocatalyst

Visible Light Energy Conversion Efficiency

- Currently: 3%,\$10/gal
- Long-term goal:10%, \$3/gal
- Theoretical max:21%

Producing Secreted Fatty Acids from Light and CO₂

"Dial in"
desired product
with specific
thioesterase

Excellent Fatty Acid Recovery

Expanded-bed columns of reusable resin

Decarboxylation and Isomerization

Fatty acid conversion to alkane (at high temperature and pressure, and with a catalyst for decarboxylation and isomerization)

Production Yield

Properties	
Freeze Point*	-35 °C
Flash Point	37 °C
Mass Conversion	83%

*As low as we can test

Scale-up Scenario

The Team

NC STATE UNIVERSITY

